
  

Functions
Part Two



  

Outline for Today

● Recap from Last Time
● Where are we, again?

● Connecting Function Types
● Relating the topics from last time.

● Function Composition
● Sequencing functions together.



  

Recap from Last Time



  

Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For any x in the domain, f(x) belongs to the 
codomain.

● We write f : A → B to indicate that f is a function 
whose domain is A and whose codomain is B.

Domain Codomain

The function 
must be defined 
for each element 

of its domain.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

need to be 
produceable.



  

Involutions

● A function f : A → A from a set back to itself 
is called an involution if the following 
first-order logic statement is true about f:

∀x ∈ A. f(f(x)) = x.
(“Applying f twice is equivalent to not 

applying f at all.”)
● For example, f : ℝ → ℝ defined as f(x) = -x 

is an involution.



  

Injective Functions

● A function f : A → B is called injective (or one-to-one) 
if different inputs always map to different outputs.

● A function with this property is called an injection.
● Formally, f : A → B is an injection if this FOL statement 

is true:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different”)

● Equivalently:

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same”)



  

Surjective Functions

● A function f : A → B is called surjective (or 
onto) if each element of the codomain is 
“covered” by at least one element of the domain.

● A function with this property is called a 
surjection.

● Formally, f : A → B is a surjection if this FOL 
statement is true:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every possible output, there's at least one 
possible input that produces it”)



  

We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● In the context of a proof, you will need to 
assume some statements and prove others.
● We assumed all birds can fly.
● We proved all herons can fly.

● Statements behave differently based on 
whether you’re assuming or proving them.



  

To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Introduce a variable
x into your proof that

has property A.

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Prove A. Then prove B. Assume A. Then assume B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Prove A → B and B → A. Assume A → B and B → A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.



  

New Stuff!



  

Connecting Function Types



  

Types of Functions

● Last time, we saw three special types of 
functions:
● involutions, functions that undo themselves;
● injections, functions where different inputs 

go to different outputs; and
● surjections, functions that cover their whole 

codomain.
● Question: How do these three classes of 

functions relate to one another?



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

f is an
involution.

f is
surjective.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.

Assume this. Prove this.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.

Since we’re assuming this, we
aren’t going to pick a specific
choice of x right now. Instead,

we’re going to keep an eye
out for something to

apply this fact to.

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.We’ve said that we need
to prove this

statement. How do we
do that?

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.There’s a universal
quantifier up front.

Since we’re proving
this, we’ll pick an
arbitrary b ∈ A.

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.
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Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.Now, we hit an
existential quantifier.

Since we’re proving this,
we need to find a choice

of a ∈ A where this
is true.

Proof Outline
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 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where
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Theorem: For any function f : A → A,
if f is an involution, then f is surjective.
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Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A, if f is an
involution, then f is surjective.

Proof: Pick any involution f : A → A. We will prove
that f is surjective. To do so, pick an arbitrary
b ∈ A. We need to show that there is an a ∈ A
where f(a) = b.

Specifically, pick a = f(b). This means that
f(a) = f(f(b)), and since f is an involution we know 
that f(f(b)) = b. Putting this together, we see that 
f(a) = b, which is what we needed to show. ■

Proof Outline
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 3. Give a choice of a ∈ A where

f(a) = b.
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To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Introduce a variable
x into your proof that

has property A.

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Prove A. Then prove B. Assume A. Then assume B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Prove A → B and B → A. Assume A → B and B → A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

f is an
involution.

f is
injective.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.

Assume this. Prove this.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.

Come up with a proof outline for this 
theorem. What variables will we introduce, 
what do we assume about them, and what is 

our Want to Show?

Respond at pollev.com/zhenglian740



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).

Since we’re assuming this, we
aren’t going to pick a specific
choice of x right now. Instead,

we’re going to keep an eye
out for something to

apply this fact to.



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).

We need to prove this part.
What does that mean?



  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

(∀x ∈ A. f(f(x)) = x) → (∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

Assume
this.

Prove
this.

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A.such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).

Since we’re proving something
universally-quantified, we’ll
pick some values arbitrarily.
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Assume
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Prove
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Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A. such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).

We now need to prove this
implication. But we know

how to do that! We assume
the antecedent and prove

the consequent.
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Theorem: For any function f : A → A,
if f is an involution, then f is injective.
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Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).



  

Theorem: For any function f : A → A, if f is an
involution, then f is injective.

Proof: Consider any function f : A → A that’s an
involution. We will prove that f is injective. To do
so, choose any a₁, a₂ ∈ A where a₁ ≠ a₂. We need
to show that f(a₁) ≠ f(a₂).

We’ll proceed by contradiction. Suppose that
f(a₁) = f(a₂). This means f(f(a₁)) = f(f(a₂)), which in 
turn tells us a₁ = a₂ because f is an involution. But 
that’s impossible, since a₁ ≠ a₂.

We’ve reached a contradiction, so our assumption 
was wrong. Therefore,
we see that f(a₁) ≠ f(a₂),
as required. ■

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).
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Let’s take a quick break!



  

Time-Out for Announcements!



  

Midterm Exam Logistics

● Our midterm exam will be on Friday, July 26th from 
5:00 – 8:00 PM in Hewlett 201 (our normal lecture 
room).

● You’re responsible for lectures up to the end of 
week 3 and topics from PS1 – PS3. Later lectures 
and problem sets won’t be tested here. Exam 
problems may build on the written or coding 
components from the problem sets.



  

Midterm Exam Logistics

● The exam is open-book, open-note, and closed-other-
humans/AI.

● You are free to make use of all course materials on the 
course website and on Canvas, including lecture 
slides and lecture videos. You are also permitted to 
search online for conceptual information (for example, 
by visiting Wikipedia).

● You are not permitted to communicate with other 
humans about the exam or to solicit help from others. 
For example, you must not communicate with other 
students in the course, you must not ask questions on 
sites like Chegg or Stack Overflow, and you must not 
receive assistance from any AI chatbots.



  

Midterm Exam

● We want you to do well on this exam. 
We're not trying to weed out weak students. 
We're not trying to enforce a curve where 
there isn't one. We want you to show what 
you've learned up to this point so that you get 
a sense for where you stand and where you 
can improve.

● The purpose of this midterm is to give you a 
chance to show what you've learned in the 
past few weeks. It is not designed to assess 
your “mathematical potential” or “innate 
mathematical ability.”



  

OAE Accommodations 

● We are currently in the process of reserving 
rooms for the midterm exam.

● If you have an OAE letter, please send it to 
cs103-sum2324-staff@lists.stanford.edu ASAP. 

● We’ll be in touch in the upcoming week 
regarding room logistics.   

mailto:cs103-sum2324-staff@lists.stanford.edu


  

Extra Practice Problems

● Up on the course website, you’ll find some 
Extra Practice Problems on the topics 
covered by the upcoming midterm.

● Many of these are old midterm questions. 
Some are just really fun problems we 
thought you might enjoy working through.

● Take the time to work through some of 
these problems. We also released 
midterms from some of the previous 
quarters. 



  

Back to CS103!



  

Function Composition



  
People Places Prices

Amy

Benson

Annika

Nanni

Sunnyvale, CA

San Francisco

Redding, CA

Utqiagvik, AK

Far Too Much

A King's Ransom

A Modest Amount

More Than
You’d Expect

Ea-Nasir
Palo Alto, CA

f : People → Places g : Places → Prices

h : People → Prices
h(x) = g(f(x))



  

Function Composition

● Suppose that we have two functions 
f : A → B and g : B → C.

● Notice that the codomain of f is the 
domain of g. This means that we can use 
outputs from f as inputs to g.

f g
f(x)

 
x
 

g(f(x))
 



  

Function Composition

● Suppose that we have two functions f : A → B 
and g : B → C.

● The composition of f and g, denoted g ∘ f, is a 
function where
● g ∘ f : A → C, and
● (g ∘ f)(x) = g(f(x)).

● A few things to notice:
● The domain of g ∘ f is the domain of f. Its codomain is 

the codomain of g.
● Even though the composition is written g ∘ f, when 

evaluating (g ∘ f)(x), the function f is evaluated first.

The name of the function is g ∘ f. 
When we apply it to an input x, 
we write (g ∘ f)(x). I don't know 

why, but that's what we do.



  

Properties of Composition



  

Theorem: If f : A → B is an injection and 
g : B → C is an injection, then the function 

g ∘ f : A → C is an injection.



  

Organizing Our Thoughts



  

f : A → B is an injection.

∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.

∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

g ∘ f is an injection.

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →
(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)

)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.

What We’re Assuming What We Need to Prove

We’re assuming these
universally-quantified

statements, so we won’t
introduce any variables

for what’s here.

We need to prove
this universally-

quantified statement.
So let’s introduce
arbitrarily-chosen

values.
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this universally-

quantified statement.
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arbitrarily-chosen
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 f(x) ≠ f(y)
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g : B → C is an injection.

∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.

a₂ ∈ A is arbitrarily-chosen.



  

g ∘ f is an injection.

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →
(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)

)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.

What We’re Assuming What We Need to Prove

Now we’re looking at
an implication. Let’s

assume the antecedent
and prove the consequent.

f : A → B is an injection.

∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.

∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.

a₂ ∈ A is arbitrarily-chosen.

a₁ ≠ a₂
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g ∘ f is an injection.
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)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.

What We’re Assuming What We Need to Prove

Let’s write this out
separately and simplify

things a bit.
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A B C

a₁

a₂

f(a₁)

f(a₂)

g(f(a₁))

g(f(a₂))



  

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, consider any a₁, a₂ ∈ A where a₁ ≠ a₂. We will
prove that (g ∘ f)(a₁) ≠ (g ∘ f)(a₂). Equivalently, we need to
show that g(f(a₁)) ≠ g(f(a₂)).

Since f is injective and a₁ ≠ a₂, we see that f(a₁) ≠ f(a₂). 
Then, since g is injective and f(a₁) ≠ f(a₂), we see that
g(f(a₁)) ≠ g(f(a₂)), as required. ■

A B C

a₁

a₂

f(a₁)

f(a₂)

g(f(a₁))

g(f(a₂))
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Great exercise: Repeat this 
proof using the other definition of 

injectivity.



  

Theorem: If f : A → B is a surjection and 
g : B → C is a surjection, then the function 

g ∘ f : A → C is a surjection.



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. This 
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. This 
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. This 
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. This 
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. This 
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■

How should we complete this sentence?

Respond at pollev.com/zhenglian740
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What does it mean for g ∘ f : A → C to be surjective?

∀c ∈ C. ∃a ∈ A. (g ∘ f)(a) = c

Therefore, we'll choose arbitrary c ∈ C and prove that there
is some a ∈ A such that (g ∘ f)(a) = c.
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Major Ideas From Today

● Statements behave differently based on whether 
you’re assuming or proving them.

● When you assume a universally-quantified 
statement, initially, do nothing. Instead, keep an 
eye out for a place to apply the statement more 
specifically.

● When you prove a universally-quantified 
statement, pick an arbitrary value and try to prove 
it has the needed property.

● As always: try concrete examples, draw pictures, 
etc. before you dive into writing a proof.



  

First-Order Logic Translation 
Workshop



  

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y

write a statement in first-order logic that says “for any 
n ∈ N, n is even if and only if n2 is even.”



  

for any n  ∈ N, n is even if and only if n2 is even.

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y



  

∀n. (Natural(n), n is even if and only if n2 is even.)

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y

What connective goes here? 

Respond at 
pollev.com/zhenglian740



  

∀n. (Natural(n) → n is even if and only if n2 is even.)

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y



  

∀n. (Natural(n) → (n is even ↔ n2 is even.))

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y



  

∀n. (Natural(n) → (n is even ↔ n2 is even.))

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y

How do you express “n is even” using the given 
predicate and functions? Reminder: numbers aren’t a 
part of first-order logic, so you can’t use the number 

2 in this problem. 

Respond at pollev.com/zhenglian740



  

∀n. (Natural(n) → 
    (n is even ↔ n2 is even.)
)

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y



  

∀n. (Natural(n) → 
    ((∃k. Natural(k) ∧ n = 2k) ↔ n2 is even.)
)

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y



  

∀n. (Natural(n) → 
    ((∃k. Natural(k) ∧ n = k + k) ↔ n2 is even.)
)

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y

Now, complete the rest of the translation! 

Respond at pollev.com/zhenglian740



  

∀n. (Natural(n) → 
    ((∃k. Natural(k) ∧ n = k + k) ↔ 2

(∃k. Natural(k) ∧ n2 = 2k)
)

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y



  

∀n. (Natural(n) → 
    ((∃k. Natural(k) ∧ n = k + k) ↔ 2

(∃k. Natural(k) ∧ n · n = k + k)2
)

Using the predicate

   - Natural(x), which states that x is a natural number

and the functions
   - x + y, which represents the sum of x and y, and
   - x · y, which represents the product of x and y



Next Time

● Graphs
– A ubiquitous, expressive, and flexible 

abstraction!
● Properties of Graphs

– Building high-level structures out of 
lower-level ones!
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